If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6+9z+z^2=0
a = 1; b = 9; c = +6;
Δ = b2-4ac
Δ = 92-4·1·6
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{57}}{2*1}=\frac{-9-\sqrt{57}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{57}}{2*1}=\frac{-9+\sqrt{57}}{2} $
| 56x+1=59x-1 | | 4m-18=10 | | 5x−12=2x+24∘ | | 8y-3y-13=49.05 | | 5x−12∘∠B=2x+24∘ | | 9x-15=4+X | | -2-5n=-28 | | (3p-2)/5=(p+2)/3 | | -47+3x=97+12x | | 6y+10=5y+14 | | 9m-4=12m-3m+5 | | -6=2(p-3+4(p+6) | | 9m-4=12m-3m+5= | | 2x+x=290 | | 6f+19=2f-1 | | 2x-5(x-5)=-2+5x-37 | | 2x+3=-3/4 | | 6(n+(n+2)+(n+4)=-18 | | 11y+6=8y-9 | | 1/4(x=120 | | z/4=12/6 | | -8n+12=-52 | | 49+35n=-259 | | 49+35n=-25949+35n=-259 | | w/12-2=2 | | 13=1c+3 | | 23n=8n | | 4y-36+14y=12y-60 | | 8m-1=57 | | 12y+2=38 | | 4000=x/1.08+x/1.24 | | 11b-3=19 |